Conjectures of Rado and Chang, and Special Aronszajn Trees

Victor TORRES PEREZ (joint work with Stevo TODORCEVIC)

Kurt Gödel Research Center for Mathematical Logic, University of Vienna

Kobe, Japan. January 24, 2012
Chang’s Conjecture and Aronszajn trees
Some applications of RC

Special Aronszajn trees of larger heights

Rado’s Conjecture and Weak Squares
Principal Definitions

Definition (Rado’s Conjecture in Todorčević’s equivalent version, 1983)

A tree T of height ω_1 is the union of countably many antichains (special) if and only if every subtree of T of size \aleph_1 is special.
Theorem (Todorčević, 1993)

Rado’s Conjecture implies (some examples):

1. $\theta = \mathbb{N}$ for all regular $\theta \geq \aleph_2$,
2. the Singular Cardinal Hypothesis,
3. $2^{\aleph_0} \leq \omega^2$,
4. \square_κ fails for every uncountable cardinal κ,
5. CC^*.

Theorem (Feng, 1999)

Rado’s Conjecture implies the presaturation of the nonstationary ideal on ω_1.

Vìctor TORRES PEREZ (joint work with Stevo TODORCEVIC)

Conjectures of Rado and Chang, and Special Aronszajn Trees
Some applications of RC

Theorem (Todorčević, 1993)

Rado’s Conjecture implies (some examples):

1. $\theta^{\aleph_0} = \theta$ for all regular $\theta \geq \aleph_2$,

Vìctor TORRES PEREZ (joint work with Stevo TODORCEVIC)
Some applications of RC

Theorem (Todorčević, 1993)
Rado’s Conjecture implies (some examples):

1. $\theta^{\aleph_0} = \theta$ for all regular $\theta \geq \aleph_2$,
2. the Singular Cardinal Hypothesis,
Theorem (Todorčević, 1993)

Rado’s Conjecture implies (some examples):

1. $\theta^{\aleph_0} = \theta$ for all regular $\theta \geq \aleph_2$,
2. the *Singular Cardinal Hypothesis*,
3. $2^{\aleph_0} \leq \omega_2$,
Some applications of RC

Theorem (Todorčević, 1993)

Rado’s Conjecture implies (some examples):

1. \(\theta^{\aleph_0} = \theta \) for all regular \(\theta \geq \aleph_2 \),
2. the *Singular Cardinal Hypothesis*,
3. \(2^{\aleph_0} \leq \omega_2 \),
4. \(\Box_\kappa \) fails for every uncountable cardinal \(\kappa \).
Some applications of RC

Theorem (Todorčević, 1993)

Rado’s Conjecture implies (some examples):

1. $\theta^{\aleph_0} = \theta$ for all regular $\theta \geq \aleph_2$,
2. the Singular Cardinal Hypothesis,
3. $2^{\aleph_0} \leq \omega_2$,
4. \square_κ fails for every uncountable cardinal κ,
5. CC^*.
Some applications of RC

Theorem (Todorčević, 1993)

Rado’s Conjecture implies (some examples):

1. $\theta^{\aleph_0} = \theta$ for all regular $\theta \geq \aleph_2$,
2. the Singular Cardinal Hypothesis,
3. $2^{\aleph_0} \leq \omega_2$,
4. \square_κ fails for every uncountable cardinal κ,
5. CC^*.

Theorem (Feng, 1999)

*Rado’s Conjecture implies the presaturation of the nonstationary ideal on ω_1.***
We consider the following strong version of Chang's Conjecture, which we denote by CC^*:

Definition (CC^*)

There are arbitrarily large uncountable regular cardinals θ such that for every well-ordering $\langle H_\theta, \in, < \rangle$ and every countable elementary submodel $M \prec \langle H_\theta, \in, < \rangle$, and every ordinal $\alpha < \omega^2$, there exists an elementary countable submodel $M^* \prec \langle H_\theta, \in, < \rangle$ such that

1. $M^* \supseteq M$.
2. $M \setminus \omega_1 = M^* \setminus \omega_1$.
3. $A_{M^*} = M^* \setminus \omega_2 \setminus M \setminus \omega_2 \neq \emptyset$ and $\min(A_{M^*}) \geq \alpha$.

Victor TORRES PEREZ (joint work with Stevo TODORCEVIC)
We consider the following strong version of Chang’s Conjecture, which we denote by CC^*:
We consider the following strong version of Chang’s Conjecture, which we denote by \(CC^* \):

Definition \((CC^*)\)

There are arbitrarily large uncountable regular cardinals \(\theta \) such that for every well-ordering \(< \) of \(H_\theta \), and every countable elementary submodel \(M \prec \langle H_\theta; \in, < \rangle \), and every ordinal \(\alpha < \omega_2 \), there exists an elementary countable submodel \(M^* \prec \langle H_\theta; \in, < \rangle \) such that

1. \(M^* \supseteq M \).
2. \(M \setminus \omega_1 = M^* \setminus \omega_1 \).
3. \(A_{M^*} = M^* \setminus \omega_2 \setminus M \setminus \omega_2 \neq \emptyset \) and \(\min(A_{M^*}) \geq \alpha \).
We consider the following strong version of Chang’s Conjecture, which we denote by \(CC^* \):

Definition \((CC^*)\)

There are arbitrarily large uncountable regular cardinals \(\theta \) such that for every well-ordering \(< \) of \(H_\theta \), and every countable elementary submodel \(M < \langle H_\theta; \in, < \rangle \), and every ordinal \(\alpha < \omega_2 \), there exists an elementary countable submodel \(M^* < \langle H_\theta; \in, < \rangle \) such that

1. \(M^* \supseteq M \).
We consider the following strong version of Chang’s Conjecture, which we denote by CC^*:

Definition (CC^*)

There are arbitrarily large uncountable regular cardinals θ such that for every well-ordering $<$ of H_θ, and every countable elementary submodel $M \prec \langle H_\theta; \in, < \rangle$, and every ordinal $\alpha < \omega_2$, there exists an elementary countable submodel $M^* \prec \langle H_\theta; \in, < \rangle$ such that

1. $M^* \supseteq M$.
2. $M \cap \omega_1 = M^* \cap \omega_1$.
We consider the following strong version of Chang’s Conjecture, which we denote by CC^*:

Definition (CC^*)

There are arbitrarily large uncountable regular cardinals θ such that for every well-ordering \prec of H_θ, and every countable elementary submodel $M \prec \langle H_\theta; \in, \prec \rangle$, and every ordinal $\alpha < \omega_2$, there exists an elementary countable submodel $M^* \prec \langle H_\theta; \in, \prec \rangle$ such that

1. $M^* \supseteq M$.
2. $M \cap \omega_1 = M^* \cap \omega_1$.
3. $A_{M^*} = M^* \cap \omega_2 \setminus M \cap \omega_2 \neq \emptyset$ and $\min(A_{M^*}) \geq \alpha$.
Theorem (CC*)

The following are equivalent:
Theorem (CC*)

The following are equivalent:

1. CH
Theorem (CC*)

The following are equivalent:

1. CH
2. There is a special \aleph_2-Aronszajn tree.
Proposition

No special \aleph_2-Aronszajn tree admits an ascending ω_2-path of countable subsets, i.e., a sequence $A_\xi \in [T]^{\aleph_0}(\xi < \omega_2)$ of pairwise disjoint sets such that for every $\xi < \eta$, the height of every node of A_ξ is smaller than the height of every node of A_η and
Proposition

No special \aleph_2-Aronszajn tree admits an ascending ω_2-path of countable subsets, i.e., a sequence $A_\xi \in [T]^{\aleph_0} (\xi < \omega_2)$ of pairwise disjoint sets such that for every $\xi < \eta$, the height of every node of A_ξ is smaller than the height of every node of A_η and

$$\exists x \in A_\xi \exists y \in A_\eta \ x <_T y.$$
Let $c : T \to \omega_1$ be a specializing map, i.e. for every $x, y \in T$ with $x <_T y$, $c(x) \neq c(y)$. In order to obtain a contradiction, suppose T admits an ascending ω_2-path of countable subsets $\langle A_\xi \rangle_{\xi \in \omega_2}$. For $\xi < \omega_2$, let $\sup c'' A_\xi = \alpha_\xi$. Since $|A_\xi| = \aleph_0$, $\alpha_\xi < \omega_1$. The map $\xi \mapsto \alpha_\xi$ gives a partition of ω_2 into ω_1 parts. By regularity of ω_2, there is $\Gamma \subseteq \omega_2$ of cardinality ω_2, and $\alpha \in \omega_1$ such that for every $\xi \in \Gamma$, $\alpha_\xi = \alpha$. Let δ the ω_1-th element of Γ. In particular, $|\Gamma \setminus \delta| = \aleph_1$.

Vìctor TORRES PEREZ (joint work with Stevo TODORCEVIC) Conjectures of Rado and Chang, and Special Aronszajn Trees
Proof of Proposition

Let \(c : T \to \omega_1 \) be a specializing map, i.e. for every \(x, y \in T \) with \(x <_T y \), \(c(x) \neq c(y) \).
Proof of Proposition

Let \(c : T \to \omega_1 \) be a specializing map, i.e. for every \(x, y \in T \) with \(x <_T y \), \(c(x) \neq c(y) \).

In order to obtain a contradiction, suppose \(T \) admits an ascending \(\omega_2 \)-path of countable subsets \(\langle A_\xi \rangle_{\xi \in \omega_2} \).
Proof of Proposition

Let $c : T \to \omega_1$ be a specializing map, i.e. for every $x, y \in T$ with $x <_T y$, $c(x) \neq c(y)$. In order to obtain a contradiction, suppose T admits an ascending ω_2-path of countable subsets $\langle A_\xi \rangle_{\xi \in \omega_2}$.

For $\xi < \omega_2$, let

$$\sup c'' A_\xi = \alpha_\xi.$$

Since $|A_\xi| = \aleph_0$, $\alpha_\xi < \omega_1$.
Proof of Proposition

Let $c : T \rightarrow \omega_1$ be a specializing map, i.e. for every $x, y \in T$ with $x <_T y$, $c(x) \neq c(y)$.

In order to obtain a contradiction, suppose T admits an ascending ω_2-path of countable subsets $\langle A_\xi \rangle_{\xi \in \omega_2}$.

For $\xi < \omega_2$, let

$$\sup c'' A_\xi = \alpha_\xi.$$

Since $|A_\xi| = \aleph_0$, $\alpha_\xi < \omega_1$. The map $\xi \mapsto \alpha_\xi$ gives a partition of ω_2 into ω_1 parts. By regularity of ω_2, there is $\Gamma \subseteq \omega_2$ of cardinality ω_2, and $\alpha \in \omega_1$ such that for every $\xi \in \Gamma$, $\alpha_\xi = \alpha$. Let δ the ω_1-th element of Γ.

Vìctor TORRES PEREZ (joint work with Stevo TODORCEVIC) Conjectures of Rado and Chang, and Special Aronszajn Trees
Proof of Proposition

Let $c : T \to \omega_1$ be a specializing map, i.e. for every $x, y \in T$ with $x <_T y$, $c(x) \neq c(y)$.

In order to obtain a contradiction, suppose T admits an ascending ω_2-path of countable subsets $\langle A_\xi \rangle_{\xi \in \omega_2}$.

For $\xi < \omega_2$, let

$$\sup c''A_\xi = \alpha_\xi.$$

Since $|A_\xi| = \aleph_0$, $\alpha_\xi < \omega_1$. The map $\xi \mapsto \alpha_\xi$ gives a partition of ω_2 into ω_1 parts. By regularity of ω_2, there is $\Gamma \subseteq \omega_2$ of cardinality ω_2, and $\alpha \in \omega_1$ such that for every $\xi \in \Gamma$, $\alpha_\xi = \alpha$. Let δ the ω_1-th element of Γ. In particular, $|\Gamma \cap \delta| = \aleph_1$.
Proof of Proposition

By the definition of ascending path, for every $\xi \in \Gamma \cap \delta$, there are $y_\xi \in A_\delta$ and $x \in A_\xi$ with $x < T y_\xi$.
Proof of Proposition

By the definition of ascending path, for every $\xi \in \Gamma \cap \delta$, there are $y_\xi \in A_\delta$ and $x \in A_\xi$ with $x < T y_\xi$. Again, the map $\xi \mapsto y_\xi$ partitions $\Gamma \cap \delta$ into countable many parts. By regularity of ω_1, there is an uncountable $\Sigma \subseteq \Gamma \cap \delta$ and $y \in A_\delta$ such that $y_\xi = y$ for all $\xi \in \Sigma$.
Proof of Proposition

By the definition of ascending path, for every $\xi \in \Gamma \cap \delta$, there are $y_\xi \in A_\delta$ and $x \in A_\xi$ with $x <_T y_\xi$. Again, the map $\xi \mapsto y_\xi$ partitions $\Gamma \cap \delta$ into countable many parts. By regularity of ω_1, there is an uncountable $\Sigma \subseteq \Gamma \cap \delta$ and $y \in A_\delta$ such that $y_\xi = y$ for all $\xi \in \Sigma$.

Also remark that $\text{pred}(y) \cap A_\xi \neq \emptyset$ for every ξ in Σ, since $x_\xi \in \text{pred}(y) \cap A_\xi$. So for $\xi < \eta$ in Σ, since $y \in A_\delta$, and $x_\eta, x_\xi <_T y$, we have $x_\xi <_T x_\eta$ (since T is a tree).
Proof of Proposition

By the definition of ascending path, for every $\xi \in \Gamma \cap \delta$, there are $y_\xi \in A_\delta$ and $x \in A_\xi$ with $x <_T y_\xi$. Again, the map $\xi \mapsto y_\xi$ partitions $\Gamma \cap \delta$ into countable many parts. By regularity of ω_1, there is an uncountable $\Sigma \subseteq \Gamma \cap \delta$ and $y \in A_\delta$ such that $y_\xi = y$ for all $\xi \in \Sigma$.

Also remark that $\text{pred}(y) \cap A_\xi \neq \emptyset$ for every ξ in Σ, since $x_\xi \in \text{pred}(y) \cap A_\xi$. So for $\xi < \eta$ in Σ, since $y \in A_\delta$, and $x_\eta, x_\xi <_T y$, we have $x_\xi <_T x_\eta$ (since T is a tree). Therefore
Proof of Proposition

By the definition of ascending path, for every $\xi \in \Gamma \cap \delta$, there are $y_\xi \in A_\delta$ and $x \in A_\xi$ with $x <_T y_\xi$. Again, the map $\xi \mapsto y_\xi$ partitions $\Gamma \cap \delta$ into countable many parts. By regularity of ω_1, there is an uncountable $\Sigma \subseteq \Gamma \cap \delta$ and $y \in A_\delta$ such that $y_\xi = y$ for all $\xi \in \Sigma$.

Also remark that $\text{pred}(y) \cap A_\xi \neq \emptyset$ for every ξ in Σ, since $x_\xi \in \text{pred}(y) \cap A_\xi$. So for $\xi < \eta$ in Σ, since $y \in A_\delta$, and $x_\eta, x_\xi <_T y$, we have $x_\xi <_T x_\eta$ (since T is a tree). Therefore

$$\{x_\xi : \xi \in \Sigma\} = b$$
Proof of Proposition

By the definition of ascending path, for every $\xi \in \Gamma \cap \delta$, there are $y_\xi \in A_\delta$ and $x \in A_\xi$ with $x <_T y_\xi$. Again, the map $\xi \mapsto y_\xi$ partitions $\Gamma \cap \delta$ into countable many parts. By regularity of ω_1, there is an uncountable $\Sigma \subseteq \Gamma \cap \delta$ and $y \in A_\delta$ such that $y_\xi = y$ for all $\xi \in \Sigma$.

Also remark that $\text{pred}(y) \cap A_\xi \neq \emptyset$ for every ξ in Σ, since $x_\xi \in \text{pred}(y) \cap A_\xi$. So for $\xi < \eta$ in Σ, since $y \in A_\delta$, and $x_\eta, x_\xi <_T y$, we have $x_\xi <_T x_\eta$ (since T is a tree). Therefore

$$\{x_\xi : \xi \in \Sigma\} = b$$

is an uncountable chain of T. However
Proof of Proposition

By the definition of ascending path, for every $\xi \in \Gamma \cap \delta$, there are $y_\xi \in A_\delta$ and $x \in A_\xi$ with $x <_T y_\xi$. Again, the map $\xi \mapsto y_\xi$ partitions $\Gamma \cap \delta$ into countable many parts. By regularity of ω_1, there is an uncountable $\Sigma \subseteq \Gamma \cap \delta$ and $y \in A_\delta$ such that $y_\xi = y$ for all $\xi \in \Sigma$.

Also remark that $\text{pred}(y) \cap A_\xi \neq \emptyset$ for every ξ in Σ, since $x_\xi \in \text{pred}(y) \cap A_\xi$. So for $\xi < \eta$ in Σ, since $y \in A_\delta$, and $x_\eta, x_\xi <_T y$, we have $x_\xi <_T x_\eta$ (since T is a tree). Therefore

$$\{x_\xi : \xi \in \Sigma\} = b$$

is an uncountable chain of T. However

$$c'' b \subseteq \alpha,$$
Proof of Proposition

By the definition of ascending path, for every $\xi \in \Gamma \cap \delta$, there are $y_\xi \in A_\delta$ and $x \in A_\xi$ with $x <_T y_\xi$. Again, the map $\xi \mapsto y_\xi$ partitions $\Gamma \cap \delta$ into countable many parts. By regularity of ω_1, there is an uncountable $\Sigma \subseteq \Gamma \cap \delta$ and $y \in A_\delta$ such that $y_\xi = y$ for all $\xi \in \Sigma$.

Also remark that $\text{pred}(y) \cap A_\xi \neq \emptyset$ for every ξ in Σ, since $x_\xi \in \text{pred}(y) \cap A_\xi$. So for $\xi < \eta$ in Σ, since $y \in A_\delta$, and $x_\eta, x_\xi <_T y$, we have $x_\xi <_T x_\eta$ (since T is a tree). Therefore

$$\{x_\xi : \xi \in \Sigma\} = b$$

is an uncountable chain of T. However

$$c'' b \subseteq \alpha,$$

and α is countable, contradiction.
From now on we fix a tree T of height ω_2 and levels of cardinality \aleph_1. We assume that the domain of T is equal to ω_2. Let $e : \omega_2 \times \omega_1 \to T$ be a bijective function such that for every $\delta \in \omega_2$ and for every $\xi \in \omega_1$, $e(\delta, \xi) \in T_\delta$, and $e(\delta, \xi) \geq \delta$.
From now on we fix a tree T of height ω_2 and levels of cardinality \aleph_1. We assume that the domain of T is equal to ω_2. Let $e : \omega_2 \times \omega_1 \to T$ be a bijective function such that for every $\delta \in \omega_2$ and for every $\xi \in \omega_1$, $e(\delta, \xi) \in T_\delta$, and $e(\delta, \xi) \geq \delta$. Let θ be sufficiently large such that T, e and all relevant parameters are members of H_θ.
Lemma

Assume CC^* and that T is a special \aleph_2-Aronszajn tree. For every $M \prec H_\theta$ countable, we can find $M_0, M_1 \prec H_\theta$ countable such that

1. $M \setminus \omega_1 = M_0 \setminus \omega_1 = M_1 \setminus \omega_1$,
2. $A_0 = M_0 \setminus \omega_2 \setminus M \setminus \omega_2 \neq \emptyset$, $A_1 = M_1 \setminus \omega_2 \setminus M \setminus \omega_2 \neq \emptyset$, and $\sup(A_0) < \min(A_1)$,
3. For every $x \in A_0 \setminus T$ and for every $y \in A_1 \setminus T$, $x \not\leq_T y$ and $y \not\leq_T x$.
Lemma

Assume \(\text{CC}^*\) and that \(T\) is a special \(\aleph_2\)-Aronszajn tree. For every \(M \prec H_\theta\) countable, we can find \(M_0, M_1 \prec H_\theta\) countable such that

1. \(M \cap \omega_1 = M_0 \cap \omega_1 = M_1 \cap \omega_1\),
Lemma

Assume CC^* and that T is a special \aleph_2-Aronszajn tree. For every $M \prec H_\theta$ countable, we can find $M_0, M_1 \prec H_\theta$ countable such that

1. $M \cap \omega_1 = M_0 \cap \omega_1 = M_1 \cap \omega_1$,
2. $A_0 = M_0 \cap \omega_2 \setminus M \cap \omega_2 \neq \emptyset$, $A_1 = M_1 \cap \omega_2 \setminus M \cap \omega_2 \neq \emptyset$, and $\sup(A_0) < \min(A_1)$,
3. For every $x \in A_0 \cap T$ and for every $y \in A_1 \cap T$, $x \not\leq_T y$ and $y \not\leq_T x$.

Vìctor TORRES PEREZ (joint work with Stevo TODORCEVIC)
Proof of Lemma

Otherwise, we could produce an ω_2-ascending path of countable subsets of T, contradicting previous Proposition.
Lemma
Assume CC^* and the negation of CH. If T is a special \aleph_2-Aronszajn tree, the set

$$S_T = \{ A \in [\omega_2]^\omega : \forall x \in T (\text{pred}(x) \cap A \text{ is bounded in } \sup(A)) \}$$

is stationary.
Proof of Lemma

Let \(f : [\omega_2]^{<\omega} \rightarrow \omega_2 \). Using previous Lemma, build a binary tree \(\langle M_\sigma \rangle_{\sigma \in 2^{<\omega}} \) of countable elementary submodels of \(H_\theta \) within the set \(C_f \) of closure points of \(f \) (i.e. \(X \in C_f \) iff for every \(e \in [X]^{<\omega} \), \(f(e) \in X \)) with the property that for every \(\sigma \in 2^{<\omega} \)
Proof of Lemma

Let \(f : [\omega_2]^{<\omega} \to \omega_2 \). Using previous Lemma, build a binary tree \(\langle M_\sigma \rangle_{\sigma \in 2^{<\omega}} \) of countable elementary submodels of \(H_\theta \) within the set \(C_f \) of closure points of \(f \) (i.e. \(X \in C_f \) iff for every \(e \in [X]^{<\omega} \), \(f(e) \in X \)) with the property that for every \(\sigma \in 2^{<\omega} \)

1. \(M_\sigma \cap \omega_1 = M_{\sigma \upharpoonright 0} \cap \omega_1 = M_{\sigma \upharpoonright 1} \cap \omega_1 \),
Proof of Lemma

Let \(f : [\omega_2]^{<\omega} \rightarrow \omega_2 \). Using previous Lemma, build a binary tree \(\langle M_\sigma \rangle_{\sigma \in 2^{<\omega}} \) of countable elementary submodels of \(H_\theta \) within the set \(C_f \) of closure points of \(f \) (i.e. \(X \in C_f \) iff for every \(e \in [X]^{<\omega} \), \(f(e) \in X \)) with the property that for every \(\sigma \in 2^{<\omega} \)

1. \(M_\sigma \cap \omega_1 = M_{\sigma \uparrow 0} \cap \omega_1 = M_{\sigma \uparrow 1} \cap \omega_1 \),
2. \(M_\sigma \cap \omega_2 \subsetneq M_{\sigma \uparrow 0} \cap \omega_2 \) and \(M_\sigma \cap \omega_2 \subsetneq M_{\sigma \uparrow 1} \cap \omega_2 \).
Proof of Lemma

Let \(f : [\omega_2]^{<\omega} \to \omega_2 \). Using previous Lemma, build a binary tree \(\langle M_\sigma \rangle_{\sigma \in 2^{<\omega}} \) of countable elementary submodels of \(H_\theta \) within the set \(C_f \) of closure points of \(f \) (i.e. \(X \in C_f \) iff for every \(e \in [X]^{<\omega} \), \(f(e) \in X \)) with the property that for every \(\sigma \in 2^{<\omega} \)

1. \(M_\sigma \cap \omega_1 = M_\sigma \downarrow_0 \cap \omega_1 = M_\sigma \downarrow_1 \cap \omega_1 \),
2. \(M_\sigma \cap \omega_2 \subsetneq M_\sigma \downarrow_0 \cap \omega_2 \) and \(M_\sigma \cap \omega_2 \subsetneq M_\sigma \downarrow_1 \cap \omega_2 \),
3. For every \(x \in T \cap M_\sigma \downarrow_0 \setminus M_\sigma \) and for every \(y \in T \cap M_\sigma \downarrow_1 \setminus M_\sigma \), \(x \not\leq_T y \) and \(y \not\leq_T x \),
Let $f : [\omega_2]^{<\omega} \rightarrow \omega_2$. Using previous Lemma, build a binary tree $\langle M_\sigma \rangle_{\sigma \in 2^{<\omega}}$ of countable elementary submodels of H_θ within the set C_f of closure points of f (i.e. $X \in C_f$ iff for every $e \in [X]^{<\omega}$, $f(e) \in X$) with the property that for every $\sigma \in 2^{<\omega}$

1. $M_\sigma \cap \omega_1 = M_{\sigma \restriction 0} \cap \omega_1 = M_{\sigma \restriction 1} \cap \omega_1$,
2. $M_\sigma \cap \omega_2 \subsetneq M_{\sigma \restriction 0} \cap \omega_2$ and $M_\sigma \cap \omega_2 \subsetneq M_{\sigma \restriction 1} \cap \omega_2$,
3. For every $x \in T \cap M_{\sigma \restriction 0} \setminus M_\sigma$ and for every $y \in T \cap M_{\sigma \restriction 1} \setminus M_\sigma$, $x \not\leq_T y$ and $y \not\leq_T x$,
4. For every $r \in 2^\omega$, if $M_r = \bigcup_{n \in \omega} M_{r \upharpoonright n}$, then for every $r, r' \in 2^\omega$, $\sup(M_r \cap \omega_2) = \sup(M_{r'} \cap \omega_2)$.
Proof of Lemma

Let δ be the common supremum of every $M_r \cap \omega_2$, $r \in 2^\omega$.
Proof of Lemma

Let δ be the common supremum of every $M_r \cap \omega_2$, $r \in 2^\omega$.

Claim

There is $r \in 2^\omega$ such that $M_r \cap \omega_2 \in S$.
Proof.
Suppose not. Then for every $r \in 2^\omega$, there is $x_r \in T_\delta \cap M_r$ such that for every $\text{pred}(x_r) \cap M_r$ is unbounded in δ.
Proof.
Suppose not. Then for every \(r \in 2^\omega \), there is \(x_r \in T_\delta \cap M_r \) such that for every \(\text{pred}(x_r) \cap M_r \) is unbounded in \(\delta \). But by the construction of the tree, for every \(r, r' \in 2^\omega \), \(r \neq r' \) implies \(x_r \neq x_{r'} \).
Proof.
Suppose not. Then for every $r \in 2^\omega$, there is $x_r \in T_\delta \cap M_r$ such that for every $\text{pred}(x_r) \cap M_r$ is unbounded in δ. But by the construction of the tree, for every $r, r' \in 2^\omega$, $r \neq r'$ implies $x_r \neq x_{r'}$. Therefore, the application $r \mapsto x_r$ is an injection from 2^ω to T_δ. However, $|T_\delta| = \aleph_1$, contradicting the assumption that CH does not hold.
We are now ready to finish the proof of our Theorem. From the previous lemma we know that the set S_T is stationary in $[\omega_2]^{\aleph_0}$. We need the following result of Todorcevic.
We are now ready to finish the proof of our Theorem. From the previous lemma we know that the set S_T is stationary in $[\omega_2]^{\aleph_0}$. We need the following result of Todorcevic.

Lemma

CC^* implies that for every stationary set $E \subseteq [\omega_2]^\omega$, there is an uncountable ordinal $\alpha \in \omega_2$ such that $E \cap [\alpha]^\omega$ is stationary.
It follows that there is \(\alpha \in \omega_2 \) such that \(S_T^\alpha = S'_T \cap [\alpha]^{\omega} \) is stationary, where \(S'_T \) is the intersection of \(S_T \) with the club of all countable subsets of \(\omega_2 \) closed under the level enumeration function \(e \) of \(T \). Pick an \(x \in T \) of height \(\geq \alpha \). Then \(\text{pred}(x) \cap \alpha \) is unbounded in \(\alpha \). From the definition of \(S_T \), we know that for every \(A \in S_T^\alpha \) there is \(h(A) \in A \) such that
It follows that there is $\alpha \in \omega_2$ such that $S^\alpha_T = S'_T \cap [\alpha]^{\omega}$ is stationary, where S'_T is the intersection of S_T with the club of all countable subsets of ω_2 closed under the level enumeration function e of T. Pick an $x \in T$ of height $\geq \alpha$. Then $\text{pred}(x) \cap \alpha$ is unbounded in α. From the definition of S_T, we know that for every $A \in S^\alpha_T$ there is $h(A) \in A$ such that

$$h(A) \geq \sup(\text{pred}(x) \cap A).$$
It follows that there is $\alpha \in \omega_2$ such that $S^\alpha_T = S'_T \cap [\alpha]^\omega$ is stationary, where S'_T is the intersection of S_T with the club of all countable subsets of ω_2 closed under the level enumeration function e of T. Pick an $x \in T$ of height $\geq \alpha$. Then $\text{pred}(x) \cap \alpha$ is unbounded in α. From the definition of S_T, we know that for every $A \in S^\alpha_T$ there is $h(A) \in A$ such that

$$h(A) \geq \sup(\text{pred}(x) \cap A).$$

Using the Pressing Down Lemma for stationary sets, we can find a stationary set $S \subseteq S^\alpha_T$ and $\xi < \alpha$ such that $h(A) = \xi$ for all $A \in S$. Since S, in particular, is a cofinal subset of $[\alpha]^\omega$, this means that $\text{pred}(x) \cap \alpha$ is bounded in α, a contradiction.
We will just cite the following result that naturally supplements the result presented above.
We will just cite the following result that naturally supplements the result presented above.

Theorem (Todorcevic, T.)

*Rado’s Conjecture implies that there are no special κ^+-Aronszajn trees for any singular cardinal κ of cofinality ω.**
Reall that \Box^*_κ is the statement that there is a sequence $\langle C_\alpha : \alpha < \kappa^+ \rangle$ such that C_α is a club in α of order type at most κ and such that for all $\alpha < \kappa^+$,
Reall that \Box^*_κ is the statement that there is a sequence $\langle C_\alpha : \alpha < \kappa^+ \rangle$ such that C_α is a club in α of order type at most κ and such that for all $\alpha < \kappa^+$,

$$|\{C_\beta \cap \alpha : \alpha \leq \beta < \kappa^+\}| \leq \kappa.$$
Reall that \square^*_κ is the statement that there is a sequence $\langle C_\alpha : \alpha < \kappa^+ \rangle$ such that C_α is a club in α of order type at most κ and such that for all $\alpha < \kappa^+$,

$$|\{ C_\beta \cap \alpha : \alpha \leq \beta < \kappa^+ \}| \leq \kappa.$$

\square^*_κ is a consequence of the cardinal assumption $\kappa^{<\kappa} = \kappa$ and, it is well-known, \square^*_κ is equivalent to the existence of a special κ^+-Aronszajn tree.
Since RC implies CC^* we get the following corollaries of Theorem 5 and 11.
Since RC implies CC* we get the following corollaries of Theorem 5 and 11.

Corollary (RC)

□*ω1 and CH are equivalent.
Since RC implies CC^* we get the following corollaries of Theorem 5 and 11.

Corollary (RC)

$\Box^*_{\omega_1}$ and CH are equivalent.

Corollary

RC implies the negation of \Box^*_κ for every singular cardinal of cofinality ω.
Recall the following variation on Jenen’s principle \square_κ introduced by Schimmerling (1995): For cardinals $\lambda \leq \kappa$, let \square_κ^λ be the statement that there is a sequence $\langle C_\alpha : \alpha < \kappa^+ \rangle$ such that:

1. C_α is a family of closed subsets of α with at least one unbounded in α.
2. $|C_\alpha| \leq \lambda$ and $\text{otp}(C_\alpha) \leq \kappa$ for all $C_\alpha \in C_\alpha$.
3. If $C_\beta \in C_\beta$ and if α is a limit point of C_β, then $C_\beta \setminus C_\alpha \in C_\alpha$.

Recall the following variation on Jenen’s principle \square_κ introduced by Schimmerling (1995): For cardinals $\lambda \leq \kappa$, let \square_κ^λ be the statement that there is a sequence $\langle C_\alpha : \alpha < \kappa^+ \rangle$ such that:
Recall the following variation on Jenen’s principle \Box_κ introduced by Schimmerling (1995): For cardinals $\lambda \leq \kappa$, let \Box^λ_κ be the statement that there is a sequence $\langle C_\alpha : \alpha < \kappa^+ \rangle$ such that:

1. C_α is a family of closed subsets of α with at least one unbounded in α.

Recall the following variation on Jenen’s principle \Box^κ_κ introduced by Schimmerling (1995): For cardinals $\lambda \leq \kappa$, let \Box^λ_κ be the statement that there is a sequence $\langle C_\alpha : \alpha < \kappa^+ \rangle$ such that:

1. C_α is a family of closed subsets of α with at least one unbounded in α.
2. $|C_\alpha| \leq \lambda$ and $\text{otp}(C) \leq \kappa$ for all $C \in C_\alpha$.
Recall the following variation on Jenen's principle \Box_κ introduced by Schimmerling (1995): For cardinals $\lambda \leq \kappa$, let \Box_κ^λ be the statement that there is a sequence $\langle C_\alpha : \alpha < \kappa^+ \rangle$ such that:

1. C_α is a family of closed subsets of α with at least one unbounded in α.
2. $|C_\alpha| \leq \lambda$ and $\text{otp}(C) \leq \kappa$ for all $C \in C_\alpha$.
3. If $C \in C_\beta$ and if α is a limit point of C, then $C \cap \alpha \in C_\alpha$.
Clearly, \square^*_κ is equivalent to \square^κ_κ. The purpose of this section is to prove the following result:
Clearly, $\Box^*\kappa$ is equivalent to $\Box^\kappa\kappa$. The purpose of this section is to prove the following result:

Theorem

RC implies the negation of $\Box^\kappa\lambda$ for every κ and λ such that $\lambda < \text{cof} (\kappa)$.
Fix a \square^λ_κ-sequence $\langle C_\alpha : \alpha < \kappa^+ \rangle$ and assume $\text{cof}(\kappa) > \lambda$. We shall show that \mathcal{RC} fails. We consider the tree T of all countable closed subsets t of κ^+ such that
Fix a \square^λ_κ-sequence $\langle C_\alpha : \alpha < \kappa^+ \rangle$ and assume $\text{cof}(\kappa) > \lambda$. We shall show that $\mathcal{R}C$ fails. We consider the tree T of all countable closed subsets t of κ^+ such that

$$\forall \alpha \in \text{Lim}(t) \forall C \in C_\alpha \max(t \cap \text{Lim}(C)) < \alpha.$$ \hspace{1cm} (1)
Fix a □^λ_κ-sequence \(\langle C_\alpha : \alpha < \kappa^+ \rangle \) and assume \(\text{cof} (\kappa) > \lambda \). We shall show that \(\mathcal{R} \mathcal{C} \) fails. We consider the tree \(T \) of all countable closed subsets \(t \) of \(\kappa^+ \) such that

\[
\forall \alpha \in \text{Lim}(t) \forall C \in \mathcal{C}_\alpha \max(t \cap \text{Lim}(C)) < \alpha.
\] (1)

The ordering on \(T \) is by end-extension.
Claim

Every subtree of T of cardinality \aleph_1 is special.
Proof of the Claim
Proof of the Claim

Otherwise, let $\delta < \kappa^+$ be the minimal ordinal for which the subtree...
Proof of the Claim

Otherwise, let $\delta < \kappa^+$ be the minimal ordinal for which the subtree

$$T(\delta) = \{ t \in T : \max(t) < \delta \}$$
Proof of the Claim

Otherwise, let $\delta < \kappa^+$ be the minimal ordinal for which the subtree

$$T(\delta) = \{ t \in T : \max(t) < \delta \}$$

contains a nonspecial subtree U of size \aleph_1. Clearly, δ is a limit ordinal of cofinality ω_1. Pick $C \in \mathcal{C}_\delta$ that is unbounded in δ and fix $D \subseteq \text{Lim}(C)$ of order-type ω_1. Let
Proof of the Claim

Otherwise, let $\delta < \kappa^+$ be the minimal ordinal for which the subtree

$$T(\delta) = \{ t \in T : \max(t) < \delta \}$$

contains a nonspecial subtree U of size \aleph_1. Clearly, δ is a limit ordinal of cofinality ω_1. Pick $C \in \mathcal{C}_\delta$ that is unbounded in δ and fix $D \subseteq \text{Lim}(C)$ of order-type ω_1. Let

$$D = \{ \delta_\xi : \xi < \omega_1 \}$$
Proof of the Claim

Otherwise, let $\delta < \kappa^+$ be the minimal ordinal for which the subtree

$$T(\delta) = \{ t \in T : \max(t) < \delta \}$$

contains a nonspecial subtree U of size \aleph_1. Clearly, δ is a limit ordinal of cofinality ω_1. Pick $C \in \mathcal{C}_\delta$ that is unbounded in δ and fix $D \subseteq \text{Lim}(C)$ of order-type ω_1. Let

$$D = \{ \delta_\xi : \xi < \omega_1 \}$$

be the increasing enumeration of D.

Victor TORRES PEREZ (joint work with Stevo TODORCEVIC) Conjectures of Rado and Chang, and Special Aronszajn Trees
Proof of the Claim

Otherwise, let $\delta < \kappa^+$ be the minimal ordinal for which the subtree

$$T(\delta) = \{ t \in T : \max(t) < \delta \}$$

contains a nonspecial subtree U of size \aleph_1. Clearly, δ is a limit ordinal of cofinality ω_1. Pick $C \in \mathcal{C}_\delta$ that is unbounded in δ and fix $D \subseteq \text{Lim}(C)$ of order-type ω_1. Let

$$D = \{ \delta_\xi : \xi < \omega_1 \}$$

be the increasing enumeration of D. We may assume that the nonspecial subtree U of $T(\delta)$ is downward closed, so for $t \in U$ the ordinal $\xi_t = \text{otp}(t) - 1$ is its height both in U and T. Then, by 1, for every $t \in U$ of limit height, there is $h(t) < \xi_t$ such that
Proof of the Claim

Otherwise, let $\delta < \kappa^+$ be the minimal ordinal for which the subtree

$$T(\delta) = \{ t \in T : \max(t) < \delta \}$$

contains a nonspecial subtree U of size \aleph_1. Clearly, δ is a limit ordinal of cofinality ω_1. Pick $C \in \mathcal{C}_\delta$ that is unbounded in δ and fix $D \subseteq \text{Lim}(C)$ of order-type ω_1. Let

$$D = \{ \delta \xi : \xi < \omega_1 \}$$

be the increasing enumeration of D. We may assume that the nonspecial subtree U of $T(\delta)$ is downward closed, so for $t \in U$ the ordinal $\xi_t = \text{otp}(t) - 1$ is its height both in U and T. Then, by 1, for every $t \in U$ of limit height, there is $h(t) < \xi_t$ such that

$$(t \upharpoonright h(t)) \cap D = \emptyset.$$
Proof of the Claim

By the Pressing Down Lemma (PDL) for nonspecial trees, there is a nonspecial subtree V of U, $\alpha_0 < \omega_1$ and $t_0 \in U$ of height α_0 such that $h(t) = \alpha_0$ and $t \upharpoonright \alpha_0 = t_0$ for all $t \in V$. It follows that $\bigcup_{t \in V} (t \setminus t_0) = \emptyset$.

Vìctor TORRES PEREZ (joint work with Stevo TODORCEVIC)
Proof of the Claim

By the Pressing Down Lemma (PDL) for nonspecial trees, there is a nonspecial subtree V of U, $\alpha_0 < \omega_1$ and $t_0 \in U$ of height α_0 such that $h(t) = \alpha_0$ and $t \upharpoonright \alpha_0 = t_0$ for all $t \in V$.
Proof of the Claim

By the Pressing Down Lemma (PDL) for nonspecial trees, there is a nonspecial subtree V of U, $\alpha_0 < \omega_1$ and $t_0 \in U$ of height α_0 such that $h(t) = \alpha_0$ and $t\upharpoonright_{\alpha_0} = t_0$ for all $t \in V$. It follows that
Proof of the Claim

By the Pressing Down Lemma (PDL) for nonspecial trees, there is a nonspecial subtree V of U, $\alpha_0 < \omega_1$ and $t_0 \in U$ of height α_0 such that $h(t) = \alpha_0$ and $t \upharpoonright \alpha_0 = t_0$ for all $t \in V$. It follows that

\[
\left(\bigcup_{t \in V} (t \setminus t_0) \right) \cap D = \emptyset.
\]
Proof of the Claim

Define now a regressive mapping $g : V \to V$ as follows. We may assume that $t_0 \in V$. Nodes smaller or equal to t_0 are mapped to \emptyset. Nodes $t \in V$ that extend t_0 and that have immediate predecessor in V are mapped by g to that predecessor. If $t \in V$ is of some limit height in V and it has no predecessors s with the property that $\max(s), \max(t) \notin D = \emptyset$, then we let $g(t) = t_0$; otherwise, we let $g(t)$ be the minimal predecessor s of t in V with this property. Note that by the choice of V, we do have that in this case $g(t)$ is indeed a strict predecessor of t. Thus, g is a regressive mapping on V.
Proof of the Claim

Define now a regressive mapping \(g : V \rightarrow V \) as follows. We may assume that \(t_0 \in V \). Nodes smaller or equal to \(t_0 \) are mapped to \(\emptyset \). Nodes \(t \in V \) that extend \(t_0 \) and that have immediate predecessor in \(V \) are mapped by \(g \) to that predecessor. If \(t \in V \) is of some limit height in \(V \) and it has no predecessors \(s \) with the property that

\[
\max(s), \max(t) \not\in D = \emptyset,
\]

then we let \(g(t) = t_0 \); otherwise, we let \(g(t) \) be the minimal predecessor \(s \) of \(t \) in \(V \) with this property. Note that by the choice of \(V \), we do have that in this case \(g(t) \) is indeed a strict predecessor of \(t \). Thus, \(g \) is a regressive mapping on \(V \).

Vìctor TORRES PEREZ (joint work with Stevo TODORCEVIC) Conjectures of Rado and Chang, and Special Aronszajn Trees
Proof of the Claim

Define now a regressive mapping $g : V \to V$ as follows. We may assume that $t_0 \in V$. Nodes smaller or equal to t_0 are mapped to \emptyset. Nodes $t \in V$ that extend t_0 and that have immediate predecessor in V are mapped by g to that predecessor. If $t \in V$ is of some limit height in V and it has no predecessors s with the property that

$$[\max(s), \max(t)] \cap D = \emptyset.$$
Proof of the Claim

Define now a regressive mapping \(g : V \rightarrow V \) as follows. We may assume that \(t_0 \in V \). Nodes smaller or equal to \(t_0 \) are mapped to \(\emptyset \). Nodes \(t \in V \) that extend \(t_0 \) and that have immediate predecessor in \(V \) are mapped by \(g \) to that predecessor. If \(t \in V \) is of some limit height in \(V \) and it has no predecessors \(s \) with the property that

\[
[max(s), max(t)] \cap D = \emptyset.
\]

then we let \(g(t) = t_0 \); otherwise, we let \(g(t) \) be the minimal predecessor \(s \) of \(t \) in \(V \) with this property. Note that by the choice of \(V \), we do have that in this case \(g(t) \) is indeed a strict predecessor of \(t \). Thus, \(g \) is a regressive mapping on \(V \).
Proof of the Claim

Applying PDL for nonspecial trees to g, we get a nonspecial tree $W \subseteq V$ and $s_0 \in V$ such that $g(t) = s_0$ for all $t \in V$. Note that we must have the last alternative of the definition of $g(t)$ for $t \in W$, or in other words, we have that
Proof of the Claim

Applying PDL for nonspecial trees to g, we get a nonspecial tree $W \subseteq V$ and $s_0 \in V$ such that $g(t) = s_0$ for all $t \in V$. Note that we must have the last alternative of the definition of $g(t)$ for $t \in W$, or in other words, we have that

$$[\max(s_0), \max(t)] \cap D = \emptyset$$

for all $t \in W$.

Proof of the Claim

Applying PDL for nonspecial trees to g, we get a nonspecial tree $W \subseteq V$ and $s_0 \in V$ such that $g(t) = s_0$ for all $t \in V$. Note that we must have the last alternative of the definition of $g(t)$ for $t \in W$, or in other words, we have that

$$[\max(s_0), \max(t)] \cap D = \emptyset \text{ for all } t \in W.$$

Let $\alpha_0 = \max(s_0) + 1$, and let $\delta_0 = \min D \setminus \alpha_0$. Then $\delta_0 < \delta$ and $W \subseteq T(\delta_0)$ contradicting the assumption that δ is the minimal ordinal such that $T(\delta)$ contains such a nonspecial subtree of cardinality \aleph_1.
It remains to prove the following:
It remains to prove the following:

Claim

The tree T is nonspecial.
Proof of the Claim
In fact, we shall show that T is a Baire tree. So let $D_n \ (n \in \omega)$ be a fixed sequence of dense-open subsets of T and let $t_0 \in T$ be given. We should find $t \in T$ end extending t_0 and belonging to the intersection $\bigcap_{n<\omega} D_n$.
Proof of the Claim

In fact, we shall show that T is a Baire tree. So let \mathcal{D}_n ($n \in \omega$) be a fixed sequence of dense-open subsets of T and let $t_0 \in T$ be given. We should find $t \in T$ extending t_0 and belonging to the intersection $\bigcap_{n<\omega} \mathcal{D}_n$. Fix a continuous \in-chain M_ξ ($\xi < \kappa^+$) of elementary submodels of $\langle H_{\kappa^{++}}, \in \rangle$ containing all these objects such that $M_\xi \cap \kappa^+ = \delta_\xi \in \kappa^+ \setminus \kappa$.
Proof of the Claim

Let $E = \{ \delta \alpha : \alpha < \kappa^+, \text{cof}(\alpha) = \lambda^+ \}$.
Let

\[E = \{ \delta_\xi : \xi < \kappa^+, \text{cof} (\xi) = \lambda^+ \}. \]
Proof of the Claim

Choose an ordinal $\gamma < \kappa^+$ of cofinality ω such that for some increasing sequence $\gamma_n \ (n < \omega)$ converging to γ we have that for all $n < \omega$,

$$\text{otp}(E) \setminus (\gamma_n, \gamma_n + 1) \geq \kappa^2.$$

Since $\text{otp}(C) \leq \kappa$ for all $C \in C_\gamma$ and since $|C_\gamma| \leq \lambda < \text{cof}(\kappa)$, for each $n < \omega$ we can find $\delta_\xi \in E \setminus (\gamma_n, \gamma_n + 1)$ such that $(\forall C \in C_\gamma) \delta_\xi / \notin C.$
Proof of the Claim

Choose an ordinal $\gamma < \kappa^+$ of cofinality ω such that for some increasing sequence $\gamma_n \ (n < \omega)$ converging to γ we have that for all $n < \omega$,

$$\text{otp}(E) \cap (\gamma_n, \gamma_{n+1}) \geq \kappa^2.$$
Choose an ordinal $\gamma < \kappa^+$ of cofinality ω such that for some increasing sequence $\gamma_n \ (n < \omega)$ converging to γ we have that for all $n < \omega$,

$$\text{otp}(E) \cap (\gamma_n, \gamma_{n+1}) \geq \kappa^2.$$

Since $\text{otp}(C) \leq \kappa$ for all $C \in \mathcal{C}_\gamma$ and since $|C_\gamma| \leq \lambda < \text{cof} \ (\kappa)$, for each $n < \omega$ we can find $\delta_\xi \in E \cap (\gamma_n, \gamma_{n+1})$ such that
Choose an ordinal $\gamma < \kappa^+$ of cofinality ω such that for some increasing sequence $\gamma_n \ (n < \omega)$ converging to γ we have that for all $n < \omega$,

$$\text{otp}(E) \cap (\gamma_n, \gamma_{n+1}) \geq \kappa^2.$$

Since $\text{otp}(C) \leq \kappa$ for all $C \in C_\gamma$ and since $|C_\gamma| \leq \lambda < \text{cof} (\kappa)$, for each $n < \omega$ we can find $\delta_\xi \in E \cap (\gamma_n, \gamma_{n+1})$ such that

$$(\forall C \in C_\gamma) \delta_\xi \notin C.$$
Vìctor TORRES PEREZ (joint work with Stevo TODORCEVIC) Conjectures of Rado and Chang, and Special Aronszajn Trees

Proof of the Claim

Since $\text{cof}(\delta_{\xi_n}) = \text{cof}(\xi_n) = \lambda + \alpha_n < \delta_{\xi_n}$ (and therefore $\alpha_n \in M_{\xi_n}$) such that $\alpha_n > \delta_{\xi_n} - 1$ and $(\forall C \in C_{\gamma}) \max(C \setminus \delta_{\xi_n}) < \alpha_n$.
Since $\text{cof } (\delta_{\xi_n}) = \text{cof } (\xi_n) = \lambda^+$ for each $n \in \omega$ we can moreover find $\alpha_n < \delta_{\xi_n}$ (and therefore $\alpha_n \in M_{\xi_n}$) such that $\alpha_n > \delta_{\xi_{n-1}}$ and
Proof of the Claim

Since \(\text{cof} (\delta_{\xi_n}) = \text{cof} (\xi_n) = \lambda^+ \) for each \(n \in \omega \) we can moreover find \(\alpha_n < \delta_{\xi_n} \) (and therefore \(\alpha_n \in M_{\xi_n} \)) such that \(\alpha_n > \delta_{\xi_{n-1}} \) and

\[
(\forall C \in \mathcal{C}_\gamma) \max (C \cap \delta_{\xi_n}) < \alpha_n.
\]
Proof of the Claim

Now, starting from t_0 we build an increasing sequence $t_n < \omega$ of elements of T such that for all $n < \omega$, $t_n + 1 \in D_n \setminus M_{\xi_n}$.

Vìctor TORRES PEREZ (joint work with Stevo TODORCEVIC)
Proof of the Claim

Now, starting from t_0 we build an increasing sequence $t_n \ n < \omega$ of elements of T such that for all $n < \omega$,
Proof of the Claim

Now, starting from t_0 we build an increasing sequence $t_n \ n < \omega$ of elements of T such that for all $n < \omega$,

$$t_{n+1} \in D_n \cap M_{\xi_n}.$$
Proof of the Claim

Given $t_n \cup \{\alpha_n\} \in M_\xi$, by the assumption that D_n is open-dense in T and by the elementarity of M_ξ, we can find t_n^{++} end-extending $t_n \cup \{\alpha_n\}$ such that $t_n^{++} \in D_n \setminus M_\xi$. Let $t = \bigcup_{n < \omega} t_n \cup \{\gamma\}$.

Then t is a closed subset of κ end-extending all t_n's and belonging to t (and also in all D_n's) since $\sup(t \setminus \text{Lim}(C)) < \gamma$ for all $C \in C_\gamma$.

Vìctor TORRES PEREZ (joint work with Stevo TODORCEVIC) Conjectures of Rado and Chang, and Special Aronszajn Trees
Proof of the Claim

Given t_n, since $t_n \cup \{\alpha_n\} \in M_{\xi_n}$, by the assumption that \mathcal{D}_n is open-dense in T and by the elementarity of M_{ξ_n}, we can find t_{n+1} end-extending $t_n \cup \{\alpha_n\}$ such that $t_{n+1} \in \mathcal{D}_n \cap M_{\xi_n}$. Let
Given t_n, since $t_n \cup \{\alpha_n\} \in M_{\xi_n}$, by the assumption that \mathcal{D}_n is open-dense in T and by the elementarity of M_{ξ_n}, we can find t_{n+1} end-extending $t_n \cup \{\alpha_n\}$ such that $t_{n+1} \in \mathcal{D}_n \cap M_{\xi_n}$. Let

$$t = \left(\bigcup_{n<\omega} t_n \right) \cup \{\gamma\}.$$
Proof of the Claim

Given t_n, since $t_n \cup \{\alpha_n\} \in M_{\xi_n}$, by the assumption that \mathcal{D}_n is open-dense in T and by the elementarity of M_{ξ_n}, we can find t_{n+1} end-extending $t_n \cup \{\alpha_n\}$ such that $t_{n+1} \in \mathcal{D}_n \cap M_{\xi_n}$. Let

$$t = \left(\bigcup_{n<\omega} t_n \right) \cup \{\gamma\}.$$

Then t is a closed subset of κ^+ end-extending all t_n’s and belonging to t (and also in all \mathcal{D}_n’s) since
Proof of the Claim

Given \(t_n \), since \(t_n \cup \{ \alpha_n \} \in M_{\xi_n} \), by the assumption that \(\mathcal{D}_n \) is open-dense in \(T \) and by the elementarity of \(M_{\xi_n} \), we can find \(t_{n+1} \) end-extending \(t_n \cup \{ \alpha_n \} \) such that \(t_{n+1} \in \mathcal{D}_n \cap M_{\xi_n} \). Let

\[
t = \left(\bigcup_{n<\omega} t_n \right) \cup \{ \gamma \}.
\]

Then \(t \) is a closed subset of \(\kappa^+ \) end-extending all \(t_n \)'s and belonging to \(t \) (and also in all \(\mathcal{D}_n \)'s) since

\[
\sup(t \cap \text{Lim}(C)) < \gamma
\]

for all \(C \in \mathcal{C}_\gamma \).
Thanks!